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Current aerodynamic designs are often quite complex (geometrically). Flexible
computational tools are needed for the analysis of a wide range of configurations with
both internal and external flows. In the past, geometrically dissimilar configurations
required different analysis codes with different grid topologies in each. The duplicity of
codes can be avoided with the use of a general multiblock formulation which can handle
any grid topology. Rather than ‘hard wiring’ the grid topology into the program, it is
instead dictated by input to the program.

In the present work the compressible Euler equations, written in a body-fitted finite-
volume formulation, are solved using a pseudo-time-marching approach. Two upwind
methods (van Leer’s flux-vector-splitting and Roe’s flux-differencing) have been investi-
gated. Two types of explicit solvers (a two-step predictor-corrector and a modified mul-
tistage Runge-Kutta) have been used with multigrid acceleration to enhance covergence.

A multiblock strategy is used to allow greater geometric flexibility. The solution
domain is divided into multiple zones (blocks) and the grid for each block is then
generated. If the blocks are chosen appropriately, the difficulty of generating a boundary-
fitted grid is significantly reduced. Also, the placement of wall boundary conditions is
limited only by the placement of the face of a block. The trade-off for this flexibility
is the overhead required for the communication between the multiple blocks. In the
present multiblock implementation, two simplifying assumptions have been made. First,
the interfaces between blocks are assumed to have CO continuity. Second, the boundary

condition on any face of a block is assumed to be homogeneous across the entire face

{NASA-TM-102424) A MULTIBLOCK MULTIGRID N91-21795

THREE-DIMENSINNAL EULFR EQUATION SULVER

(NASA) 12 p CSCL 12A _
unclas

G3/64 03117468



(i.e., either completely a wall, an inflow/outflow boundary, or an interface with another
block). On block faces that have either a wall or an inflow/outflow boundary condition,
‘standard’ boundary conditions are used. On faces that are interfaces, a special interface
routine presets the values in two ghost cells (normal to the face) equal to the current
values in the coincident interior cells in the adjacent block. The updates of the interface
ghost cells are performed before each iteration in a given block. The iteration of each
block can then proceed without the need for further information from adjacent blocks.
There are two possible strategies for the implementation of multigrid with a multiblock
grid structure: (1) multigrid inside of multiblock and (2) multiblock inside of multigrid.
With the first strategy, a complete multigrid cycle (or cycles) is (are) performed for a given
block. Then work begins on the next block and so forth until all the blocks are complete.
This strategy allows the flexibility of different numbers and/or types of multigrid cycles
for different blocks, which are adjusted to speed convergence of slowly converging blocks
(assuming only steady-state results are sought). Unfortunately,r communication between
the blocks is reduced. The rate of convergence is reduced. (The interface boundary
conditions of the adjacent blocks have to remain fixed in time or a special interface

condition has to be used for the blocks to communicate from different multigrid levels).

With the second strategy, multiblock inside of multigrid, all the points on the multigrid
fine grid (grid h) in all the blocks are updated before the multigrid process continues to the
coarse grid (grid 2h). There, all the points for all the blocks are updated before proceeding
to the next coarser multigrid grid. This allows communication between the coarse grids in
the multigrid cycle. This method can also identically reproduce the convergence history
of a single block solution using an explicit algorithm— a useful debugging tool for the
multiblock logic. This latter strategy was used in the present work to compute comer
flow through a duct, flow from a jet exhaust mixing with freestream air, and transonic

flow over an ONERA M6 wing, without changing the computer program.
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SUMMARY

Several upwind numerical methods for molving the compressible inviscid and viscous Mow
cquations are discussed. Due to their explicit nature, the schemes are very simple and easy to apply
to solutions on multi-block structured grids. Their favourable high frequence damping results in
good rales of convergence when comhined with mulligrid procedures. The schemes are optimized
using a simple stability and damping factor analysis. Results for three-dimensional test cases are

shown and discnssed. Allention is payed Lo the relative efficiencies of these schemes.

INTRODUCTION

After several decades of existance, cotnputational fluid dynamics finally matured enough to allow
the solving of complex, realistic ptoblems with confidence. Several numnerical schemes are in wide-
rpread use loday, solving variely of comptessible, viscouns and inviscid problems.

The simple central difference achemen are particulaely popular and effective in inviacid flow
predictions. ‘T'he necessity of the addition of ambiguous artificial damping makes them difficult to
apply to viscous cases. The typical representatives of these numerical methods is for example the
implicit ARC3D code by Pulliam and Steger [1] or the prolific Runge-Kutta (R-K) based explicit
schemes as introduced by Jameson, Schmidt and Turkel (2).

The upwind schemes are more complex, but also typically more robust and reliable, especially for
viscous compulations. They are based on several variation of the Riemann proble‘m solver. Typical
examples are the CFL3D code developed by Thomas et. al. [3), based on the Roe's approximate
Riemann problem solution and implemented as a flux difference acheme, or the Osher acheme as
used hy Chakravarthy and Osher [1). Both of these schemes are hinplicit. “The upwind schemes ate

usually reporled to he better anitable for compreasible, viscous predictions than the central difference
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The above schemes are very effective in converging Lo aleady atates on single-block grids of modest
complexily. Most of the currently used achemen are Implicit. The hinplicit formulation allows the use
of large time steps, decreasing the number of iterations needed Lo obtain converged steady state. Due
to the simplifications made during the development of these methods (lincarization) and the
frequent use of explicit houndary conditlonn, the maxtimum allowable CFL number has been
teporled as low as ~3.0 for complicated three-dimensional flows. The finplicit parl of these rolvers
nlso provides effective high frequence damping in connection with the application of multigrid
procedures,

The application of the above numerical methods to realistic three-dimensional configurations of
significant geometric complexily is nsually not possible without the use of multi-block structured
(zonal) gride. Nete, the computational grid is aubdivided into & number of blocks of different gize
and tesolution, either ovetlapping or non-overlapping. A computationnl grid of this type adapla
mmuch easicr Lo the geometrie shape of the bodies as well ns flow fentures. "The transfer of information
between the blocks Is typically cartied out explicitely by ensuring the conrervation of Muxes accross
the block interfaces. The consequence of this procedure is a significant reduction of the maximum
allowable CFL number to values hetween 2. and 6. At theee CFL numbers, an explicit upwind
acheme of gnod accuracy when applied to vircons problems and suitable for multigrid procedures
scems to offer a belter choice.

There is a very Inrga; number of explicit achemes that have been used or are still in use for rolving
the compreasible flow equationa in their Inviscid form (Fuler) or vircous form (Navier-Stokes). The
numetical method should be simple, efficient, robust, have effective damping of high frequence errors
(neceesary for multigrid), have low dispersion (low phase error will reduce spurious oscillations and
tesnlt in faster convergence rates), low Jevels of numetical dissipation for nccurate predictions of

visconn efTecla and naintain high tesolution on stretched grida,

BASIC ALGOIUITHM

The acheme is based on Roe's flux difference splitting [5,3]. This lype of upwind scheme is
simplified by lineatizing the Riemann problem between two cell interfaces about a state obtained by
Roe's averaging procedure, Mef. [b]. The present dircretization employed the finite volume appronch,
with the slate variables at the cell interfacen determined by the MUSCL interpolation, using mostly
the go-called x scheme.

In  the inviscid case, the governing equations are the three-dimensional Euler equations,
expressed in nondimensional conservation law form for curvilinear coordinates € n ¢, using the
usual fluid dynamica nolation, ne:
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veclors in the direction &, n and ¢, respect. The remidiscrele form of the governing equations is
obtained ffom (1) by carrying out the rpatial discretization, assuming a¢ = an = a¢ = 1.0

oF ) 2

¢ = iy Fiy @)

In equation (2), F‘_le is the numerical Mlux vector at the cell interface between cells §,j,k and

i+14,k; i,k are the spatial indices in the directions £, n and ¢, respectively. The expressions in the

other two directions are sitnilar and will not be repented here. Then,
Q_nr. =(F .- a, .-G mo,-n 3
ot = Mg = Py R+ (G - G+ Ol - ) @

Following Ref. [5], the numetieal lux F, , , for example, is evaluated ns

i+
= . i8] 3
r;+; = ; [ Fp +Fp, §€|/\(|‘;£ (Qn Q[,)] (1)
Tlere, Fn = F(Qn) , F" = F(Q") , where QR and Ql, are the conservative flow variables
describing the states right and left of the cell interface and are obtained by an approptiate
incrpolation or extrapolation. ‘The Iast expression In eq. (4) in & dampimg term due to the upwind
chatacter of the present approach; §€ and A( are the cigenvector and eigenvalue matrices of the flux
Jacobian matrix g(%‘ evaluated using the Roe averaged Mow variables 7, G, ¢, % and h, given in [5).
‘The selection of & particular type of time stepping will determine the characteristics of the
numetical method. In the present work, explicit multi-stnge schemes were consideted; their S-stage
version can be writlen in a somewhat general form as
. 8 _ An w1 «-2 ] n
"<8: Q= Q- al TG g e - Mg Ry ) (5)
Qn+| - QS
ik = Sk
The above formulation of the time stepping procedure applics not only to the modificd Runge-
Kulta method in [2], but alno many other exiating achemes. From these infinitely many possible
achemes, only n few are auitable for the above flux difference aplitting rpatial discretization. They

were selected by considering the much simplified acalar, linear ence of the wave equalions,

ALGORITIIMS
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In otder lo compare nome of the time-atepping proceduren (5), the atandard Fourier stability
analysin of several schemes was carried out, ylelding the amplificntion factor g and the phase error
¢/ 46 for the sitnple wave equation

BoHefi=o . >0 (0

‘Thete are two major blocka of acheme vatintions that fit eq. (5).

Modified Beam-Warming (BW) Scheme
This acheme was originally introduced by Deamn and Warming [6]. It is a two-step method
consisting of a firal order predictor and accond order corrector. It has been alightly modified to make
it suitable for the present finite volume formulation:
Predictor:
al = al = afy (1)
Qi] = Qi" - al lll
Correclor:

QE = Qin + “Q,’ - Q;'-l) i Q?{ = Q?+| - Q(Q?_',g - Qil+l) (”’)
Qf =qt! = q - si n?
In both ateps, only the extrapolations (7a) and (7h) are dilferent; the algebra that compleles one
iteration, consisting of eq. (3) with (4), in identical. ‘The stability analyais of this scheme is given in
every gonod texthook on CFD and will not be tepeated here. ‘The resulting plot of the magnitute of
the amplification factor |g] can be neen in Fig. Ia, plotted as a funclion of the spatial wave number
A between 0 and » and the CFL-numbetr ¢ hetween 0 and 2.
The scheme is still second order accurale in space and Lime, salisfics the "shift condition™ and has
a stahility limit of ¢=2. It has a telatively modest disepertion. It was named the "1-2 BW scheme”.
It is a very aimple and efficient method, consinting of only Lwo steps. It performed well on single
grids, in particular when applied to unsteady flow predictions.

There were, however, nome problems with this scheme. Since the two steps are diflerent, the
steady stale result will depend on the time atep. Thin phenomen was ohserved in only n few enses,
represented by convergence o tesidual that was larger than "machine rero™. At this time, none of
the flux limitors tested In this acheme converged mote than two orders of magnitude. The resulting
flow ficlds agreed well with other, fully converged numetical tesults. This type of behaviour has been
observed by other investigators, hut is atill disturbing,

A more serioun problem s the increase of the damping factor to 1.0 at high frequency and o=1. In
.realar case, the CFL numbet ean be kept at its optimum value (1.7 in the case of the 1-2 BW
scheme), but in the case of the Fuler equations there are three distine eigenvalues in each direction.
Typically, local time atepping will be implemented, where each cell will be advanced at its optimum
time step, corresponding Lo the maximum eigenvalue at that cell. ‘This means that only the
maximum eigenvalue will correapond to the optimum CFL number for high frequence damping and

one or mote mipht correspand to the CFL numher tangea with very little damping. This wae
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manifeated by the lack of convergence of the 1-2 BW acheme when utilized in a Multi-Grid
procedure. For multigrid applications, this scheine war modified by making the first step (predictor)
also second order accurale:

Qf =qP +4@Qf-Qfp s Q=qf,-hal,-Qh) @
The plot of the damping characteristics of this scheme, ealled 2-2 BV, s shown in Fig. 1h. The
maximum stable CFL number iz now only 1.0, but the high frequence damping is much better. This

scheme worked well with Multi-Grid and will be discueeed below,

Modified Runge-Kutla Methods

Ihe modified N-K methode, with the alandard act of coefficients, have been rather successfull in
combination with the central difference apatial discretizalion. They have been, however, petforming
very poorly with upwind differencing. ‘The standard confficients have to he modified to achieve
belter petformnance, resulting in rchemes that are in genernl of reduced neenraey in lime. In order to
find the optimum sets of the R-K cocfficients, n Fouticr stability analysis was carried out, similar to
the approach in (2). The extrapolation of the stale varinbles to the cell interfaces was based on the

ro ealled x-acheme:

Qf = Q'+ Ja0 - xg)A] + (1 + k)8 )T (72)
. +

Ai=Q'-Qi_| } Ai =Q;+|'Qi H (9b)

Q= Qi - G {0+ kG 87y + (1= xt AT % (%)

where € is one of the possible flux limitora. ‘The value of the parnmeter & deternines the spatial
accuracy of the scheme; x=-1 is fully npwind, second order accurate; k=0 is the upwind biased
recond order Fromm schieme; x:i is upwind binsed third order and k=1 i3 second order central
difference ncheme. The firat order acheme in obtnined by selting €=0. In the present slability
analysis, the limitor € wag aet {o 'l (no limitor) for simplicity.

‘The R-K time stepping for equation (6) can be written ns

n
W =u"- a6, at ¥ RY = 0(:_3:_) (10)
Hete, 0g=1 for consistancy, with UL ) Making the assumption that u is harmonic, leads to
N = cgg = ?ﬁ = ugre’ = 2u (1)
Defining P=a4t z, substituting eq. (11) in eq. (10) and rome sitple algehea yiclds
g b4 (U"+I/u") — ' + P + ns_l", + eos + 01“2-..Os_lps (12)

Clearly, for atability, (P)<0 and Jg|<1. The stability and damping properties of the scheme are
nssnciated with the complex polynomial (12). The damping |g| is a function of the complex P=x+1y,
1=4-1, and can be best shown as a plot of contours of constant [g| between 0 and 1. llowever,
w=ul = (13)
where 1 in the spatial wave number, ranging from 0 to n. Values of 4 helween % and x are
considered high frequencies. P now reprenenta the Foutler traneform of the apatial differencing

operator and can he supeatimposed on the damping factor conlour plots. Defining

o= (11)
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as the CFL number, and observing that FH ;:cu“l gives

R=-t1= Zli' c(u' ” - “i-;) (15)
Eq. (15), combined with eq.(13) and (9), for €=1, yields finally
P =o' 4 ) il (16)

P is a funclion of ¢ and f; the plot of I'(¢,/1) and |g| can be used to optimize the coefficients ag.
The resulting stability plols are shown only in the upper half of the negalive real part of P (fourth
quadrant) since they are rymmnettic with respect to the y=0 coordinate line. The optimization of the
cocflicientn ag was carried out by displaying these atability plots on a PC-type microcoinputer. The
changes in the shape of the [g| contouta were ohrerved in real time as the coefficients were changed.
The “islands™ of the low value of [g| corterpond Lo the roots of the polynomial (12). ‘The main
prrpose of this oplimization waa Lo find a combination of the corflicienta ag such that, for as large
a ns posaible, there would he good high frequency damping (losw value of |g|) for a large tange of @
(maximum size of the "islanda™ as close to the real axis as possible). The optimization was
performed for four different apatial discretizations (1-at order; 2-nd order fully upwind, x=-1; 2-nd
oreder Fromm echeme, x=0; 3.rd order upwind bias, x:_‘) for the two-, Lhrer- and four-singe R-K
schemen. Fven in the case of the four-alage reheme, the actual optimization of the three coefficienls
(aszl) was relatively eany and quick, once the influence of the coclficients on the stability plots was
undcrstond. Only a few nelecled stability plols of the most intetesting srchemes will he presented
here. The optlimized cocflicients are aumnmarized in Table 1.

‘The nimplest rchiemen to aptimirze were all the two-atnge versions, since only one coclficient is
freely relectable. The ease of k=0 in shown in Fig. 2a. For the optimmn coeflicient a,= 0.42, the
theoretically determined maximum atable ¢fl number was 1. The Fromm acheme performed very
well in mast of the test enses die Lo (e very low numetical dispersion.

The four-stage R-K schemes nre mote Interesting. Here, the optimum combinalion of three
coclficients has to be found. ‘The standard R-K coclficients (oy=}; 0,=1i a3=}; o,=1), shown in
Fig. 2b for the thitd-order acheme, performend, as expected, telatively poorly. It should be noted
that, when multi-grid procedures are implemented, the maximuwin CFL-number ia of little
importance. The high feequency damping (or lack of it) will effect the rate of convergence to steady
slale more rignificantly than the CFL-number. In this case of standard cocfficients, the maximum
stable CFL number in relatively low at 0=1.7, hut, more rignificantly, the damping of high
frequencies of error propagation (at A>F) s very weak. 'The result of the present optimization,
shown in Fig.jl(; is much mote promissing.

It should he mentioned here that, in a parallel effort, van Leer et. al. [7] also tricd to oplimize the
R-K coelficienta for applicationa with the upwind methade, ‘Their appronch was romewhat different:
asauming that a genuine and practical multi-dimensional chiaracteristic formulation of the Euler
eqnations could be found, they optimized the R-K cocfficients for only one value of ¢, argueing that
ench wave would be propagated at ita optimom CFl-number. Unfortunately, there no snch

formnlntion for the three dimencionnl ener The adenntape of thie appronch wae that the eeleclion
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process could be aulomated, 'l;ﬂ‘i"”“é'g the "guensing game” involved in the present approach,
Theit tesulta nre shown in Fig. 3k and M, Genernlly, theit maximuin a was lower, and the damping
effeclive aver A narrower range of CFl, valuen, o

In the cnse of the third order acheme, the present optimum a-a are ahown in Fig. 3d. In the real
test cases, however, Lthe van Albada limitots were implemnented, shifting the I’-curve to the left. The
teal optimum CFL number was thzncfme much lower (1.8). A new rel of cocfficients for the limited

case was found. IL is shown in FigYe (o =.11; 0,=.245; 03=.4R8); the maximumin ¢ was 2.5.

RESULTS

Most of the ahove schemes were tested on number of two- and three-dimensional cases. In general,
the oplimum CFL numbern ngreed well with the abave theory. In rupersanic enses, the real optimum
CFL number was usunlly nomewhat higher; In transonic enses, it was mostly the snme.

Due to the rpace limitations of this paper, only one three-dimensional cace will be discussed. Here,
the supersonic flow in a channel with two 107 comnpression rampe, at the bottom and left vertical
wnlle, with an inflow Mach number of 3.17, formed a conicnl rhock Now with two Mach tripple
pointa. ‘The resulting flow field, obtained by the Fromm acheme, is shown in Fig. 3. The
compulations were earried out using a 32x32x32 body fitted grid. The Full-Multi-Grid procedure
(FMG) was used with three grid levels with two iteratione on each grid level. Considering the results
of the above atability ;mﬂynin, the most promissing achemnes of practienl imporlance were the four-
stage Fromm scheme (x=0) and the thitd order biased scheme (x=}). The Fromm scheme was
preferred due to its low numetical dispersion, demonstiated by results with the least oscillations (no
limitors). The convergence of the k=0 acheme with o,=.11, n,=.255, ny=.46 for different CFL-
numbers is shown in Fig. 4. The best tate of convergence was achieved nt CFL numbers between 2.0
and 2.3, which was in & surprising agteement with the theory. ‘This scheme, at a ¢=2.0, is compated
with the simple 2-2 BW scheme at its maximum o=1.0 in Fig.5. ‘The 2-2 BV scheme seems to be
much slower, bul it in only & two-stage acheme and thua needs only about half the CPU time per
one ileration. Consequently, it s approximately 50% less efficient.

Finally, the present x=0 scheme is compared with the oplimized version of the x=} scheme in
Ref. (7], used at the optimum CFL number of 1.732. Its performance is much worse, aince only one
of the three eigenvaluen correnponds to the optimium damping ease. The application of the van
Albada limitor lead to a limit cycle with no apparent convergence. This ptoblem has been reported
by other investigators but was still disapointing, since all' the two-dimensional cases converged with

the limitor in effect. The problem ia being further Investigated.

CONCILUSIONS
The present atudy Investigated several types of explicit upwind schemes for rolving the
eompresaible flaw prolilama. The gimple 1.2 DAV achieme seeme to be very effeclive for predicting

unstendy flows, hot it darn nat wark with Malti €234 dur to ite fneufficient damping of high
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frequencies al wide tange of CFL numbern. ‘T'he most promissing schemes for Multi-Grid
compulations are multi-stage -K methods with optimized sels of coefficients. Here, versions with
coefficienls oplimized for wider range of CFL, numbers seem to be more robust than specialized
versions. The x=0 and x=} schemes were succeasfully tested on meveral two-dimensionnl caes and

subsequently included in a multi-block, multi grid code used for predictions of comnplex three-

dimencional flows.
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Table 1.: Optinum R-K coelficients.

1.0 x=-1 x=10 x=1/3
. 0.22 0.22 0.42 0.4 T 2.Stage
. 0.105 0.15 0.21 0.22
"y 0.325 0.10 0.44 0.18 J-Stage
. 0.056 0.091 0.11 0.135
. 0.152 0.1 0.255 0.26
oy 0.1 0.42 0.6 0.41 A-Stage
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7-2n.w
ta) 1-2 BW Scheme 1b) 2-7 BV Schemn
Fig. 1: Amplification factor g &an a function of CFL-number and
wave number,

2a) 2-5tage,?-nd ordar 2b) h-stage, standard R-K,
Fromm, CFL, = 1.0 3-rd order, CFL = 1.7

2c) lh-Stage, present optimum, 2d) lh-Stage, Ref, 7, optimum,
1-gt order, CFL = h.0 1-st order, CFL = 2.0

2a8) h-sStape, pransnt optimum, 2f) h-Stnpe, prennnt optimum,
2-nd order Fromm, 0FI, = 2.7 3-rd ordesr, CFI, = 2.5
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Fig. 2: Stability plota; contourn of connt. 'R‘ with a trace of P
correaponding to a maximum CFl-number.
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